Parameter uniform numerical scheme for time dependent singularly perturbed convection-diffusion-reaction problems with general shift arguments (Q526714)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Parameter uniform numerical scheme for time dependent singularly perturbed convection-diffusion-reaction problems with general shift arguments |
scientific article; zbMATH DE number 6715498
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Parameter uniform numerical scheme for time dependent singularly perturbed convection-diffusion-reaction problems with general shift arguments |
scientific article; zbMATH DE number 6715498 |
Statements
Parameter uniform numerical scheme for time dependent singularly perturbed convection-diffusion-reaction problems with general shift arguments (English)
0 references
15 May 2017
0 references
The authors develop a numerical method for the following class of time-dependent singularly perturbed convection-diffusion-reaction problems with delay \[ \frac{\partial u}{\partial t}-\epsilon\frac{\partial^{2_{\mathcal{U}}}}{\partial x^{2}}+a(x)\frac{\partial u}{\partial x}+c(x)u(x-\delta,\;t)+b(x)u(x,\;t)+d(x)u(x+\eta,\;t)=f(x,\;t), \] subject to the interval boundary conditions \(u(x,\;t) =\phi(x,\;t)\), \(\forall(x,\;t)\in\Omega_{1}=\)\{\((x,\;t):-\delta\leq x\leq 0\) and \(0\leq t\leq T\)\}, \(u(x,\;t) =\psi(x,\;t)\), \(\forall(x,\;t) \in\Omega_{2}=\)\{\((x,\;t):1\leq x\leq 1+\eta\) and \(0\leq t\leq T\)\}, and the initial condition \(u(x,\;0)=u(x)\), \(\forall x\in\overline{D}\). The proposed numerical method is based on the backward Euler finite difference scheme for time discretization and the exact three-point finite difference scheme on a uniform grid for space discretization. The authors provide error and stability estimates of the method. Several numerical examples are considered.
0 references
singular perturbation
0 references
differential-difference equations
0 references
convection diffusion parabolic problem
0 references
fitted operator
0 references
non-standard finite difference method
0 references
error estimates
0 references
backward Euler finite difference scheme
0 references
numerical example
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0.9321755
0 references
0.93011516
0 references
0 references
0.9234701
0 references
0.92253035
0 references
0.9223609
0 references
0.92206717
0 references