Bloch functions and asymptotic tail variance (Q529251)

From MaRDI portal
scientific article
Language Label Description Also known as
English
Bloch functions and asymptotic tail variance
scientific article

    Statements

    Bloch functions and asymptotic tail variance (English)
    0 references
    0 references
    18 May 2017
    0 references
    Given a function \(f\in L^1(\mathbb{D})\), its Bergman projection is defined as \[ \mathbf{P} f(z) = \int_{\mathbb{D}} \frac{f(w)}{(1-z\overline{w})^2}\, dA(w), \quad z\in \mathbb{D}, \] where \(dA\) denotes the normalized area measure on the unit disk \(\mathbb{D}\). For \(\mu\in L^\infty(\mathbb{D})\), \(\|\mu\|_{L^\infty(\mathbb{D})} \leq 1\), and \(0 < a<1\), the author proves that \[ \int_{\mathbb{T}} \exp\left(a\frac{r^4 |\mathbf{P}\mu(r\zeta)|^2}{\log\frac{1}{1-r^2}} \right)\,ds(\zeta) \leq C(a), \quad 0 < r < 1, \] where \(C(a) =10(1-a)^{-3/2}\) and \(ds\) is length measure on the unit circle \(\mathbb{T}\). If \(1< a < \infty\), then there exists \(\mu_0\in L^\infty(\mathbb{D})\), \(\|\mu_0\|_{L^\infty(\mathbb{D})} = 1\), such that \[ \lim_{r\to 1-} \int_{\mathbb{T}} \exp\left(a\frac{r^4 |\mathbf{P}\mu_0(r\zeta)|^2}{\log\frac{1}{1-r^2}} \right)\,ds(\zeta) = +\infty. \] The main aspects of this result may be formulated as follows: The uniform asymptotic tail variance of the unit ball in \(\mathbf{P} L^\infty(\mathbb{D})\) equals one. The above result has various important applications. So, given a holomorphic function \(g: \mathbb{D}\to \mathbb{C}\), define the exponential-type spectrum \(\beta_g: \mathbb{C} \to [0, +\infty]\) of the zero-free function \(e^g\) as \[ \beta_g(t) = \limsup_{r\to 1-} \frac{\log\int_{\mathbb{T}} |e^{tg(r\zeta)}|\, ds(\zeta)}{\log\frac{1}{1-r^2}}. \] For \(g=\mathbf{P}\mu\), \(\|\mu\|_{L^\infty(\mathbb{D})}\leq 1\), the author proves that \(\beta_g(t) \leq |t|^2 /4\) for \(|t|\leq 2\), and \(\beta_g(t) \leq |t|-1\) for \(|t|\geq 2\). For \(\mathbb{D}_e\), the exterior unit disk, and a holomorphic function \(g:\mathbb{D}_e \to \mathbb{C}\), the exponential-type spectrum is defined analogously: \[ \beta_g(t) = \limsup_{R\to 1+} \frac{\log\int_{\mathbb{T}} |e^{tg(R\zeta)}|\, ds(\zeta)}{\log\frac{R^2}{R^2-1}}. \] Let \(\Sigma\) denote the class of conformal mappings \(\psi: \mathbb{D}_e \to \mathbb{C}\) with asymptotics \(\psi(z) = z + \mathcal{O}(1)\) as \(z\to\infty\). For \(0 < k <1\), let \(\Sigma^k\) denote the collection of those \(\psi\in\Sigma\) which have a \(k\)-quasiconformal extension \(\widetilde{\psi}:\mathbb{C}_\infty \to \mathbb{C}_\infty\), that is, \(\widetilde{\psi}\) is a homeomorphism of Sobolev class \(W^{1,2}\) with dilation estimate \[ |\overline{\partial}_z \widetilde{\psi}(z)| \leq k |{\partial}_z \widetilde{\psi}(z)|, \quad z\in\mathbb{C}. \] The universal spectra \(B(k,t)\), \(0 < k\leq 1\), \(t\in\mathbb{C}\), are defined as \[ B(1, t) =\sup_{\psi\in\Sigma} \beta_{\log \psi^\prime} (t), \quad B(k, t) =\sup_{\psi\in\Sigma^k} \beta_{\log \psi^\prime} (t). \] The author proves that \(B(k,t) \leq \frac{1}{4} k^2 |t|^2 (1+ 7k^2)\), \(0 < k <1\), \(t\in\mathbb{C}\). Also, he gives an application to the Minkowski dimension of quasicircles.
    0 references
    Bloch function
    0 references
    Bergman projection
    0 references
    quasiconformal mapping
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references