The eigenstructure of finite field trigonometric transforms (Q551319)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The eigenstructure of finite field trigonometric transforms |
scientific article; zbMATH DE number 5924562
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The eigenstructure of finite field trigonometric transforms |
scientific article; zbMATH DE number 5924562 |
Statements
The eigenstructure of finite field trigonometric transforms (English)
0 references
15 July 2011
0 references
Let \(\mathrm{GF}(q)\) denote a finite field with \(q\) elements. Consider the set \(\mathrm{GI}(p)=\{a+jb\,|\,a,b\in\mathrm{GF}(p)\}\), where \(p\) is a prime such that \(j^2\equiv -1\,(\mathrm{mod}\,p)\) is a quadratic nonresidue over~\(\mathrm{GF}(p)\), i.e., \(p\equiv 3\,(\mathrm{mod}\,4)\). Let \(\zeta=a+jb\in\mathrm{GI}\,(p)\) satisfy \(a^2+b^2\equiv 1\,(\mathrm{mod}\,p)\), and let \(\mathrm{ord}\,(\zeta)\) denote its multiplicative order. Originating from \textit{R.~M.~Campello de Souza, H.~M.~de Oliveira, A.~N.~Kauffman} and \textit{A.~J.~A.~Paschoal} [Proc. IEEE Internat. Sympos. Informat. Theory, p.~293 (1998)], define \[ \cos_\zeta(x)=\frac{\zeta^x+\zeta^{-x}}{2},\quad \sin_\zeta(x)=\frac{\zeta^x-\zeta^{-x}}{2j},\quad x= 0,1,\dots,\mathrm{ord}\,(\zeta)-1. \] The authors present various types of trigonometric transformations that change a vector with entries in~\(\mathrm{GF}(p)\) into one with entries in~\(\mathrm{GI}(p)\). They find the eigenvalues of the transformation matrices and study their multiplicities. They also propose procedures for constructing corresponding eigenvectors. Finally, the authors suggest applications to multiuser communication systems and error-correcting codes.
0 references
eigenvalues
0 references
eigenvectors
0 references
finite fields
0 references
trigonometric transforms
0 references
multiuser communication systems
0 references
error-correcting codes
0 references
0 references