Uniform inequalities for ultraspherical polynomials and Bessel functions of fractional order (Q579486)

From MaRDI portal





scientific article; zbMATH DE number 4015164
Language Label Description Also known as
English
Uniform inequalities for ultraspherical polynomials and Bessel functions of fractional order
scientific article; zbMATH DE number 4015164

    Statements

    Uniform inequalities for ultraspherical polynomials and Bessel functions of fractional order (English)
    0 references
    0 references
    1987
    0 references
    For the Legendre polynomials \(P_ n(x)\) \textit{A. Martin} [Phys. Rev., II. Ser. 129, 1432-1436 (1963)] proved the following uniform bound \[ | P_ n(\cos \vartheta)| \leq [1+n(n+1)(1-\cos^ 2\vartheta)]^{- 1/4},\quad n=0,1,...;\quad 0\leq \vartheta \leq \pi. \] Following the same method used by Martin to prove this inequality, the author establishes the more general result \[ | P_ n^{(\alpha)}(\cos \vartheta)| \leq P_ n^{(\alpha)}(1)[1+[P_ n^{(\alpha)}(1)]'(\beta (\alpha)P_ n^{(\alpha)}(1))^{-1}(1-\cos^ 2\vartheta)]^{-\alpha /2} \] where \(P_ n^{(\alpha)}(x)\) is the ultraspherical polynomial of degree n, and \(\beta =\alpha\) if \(0.065\leq \alpha <1\); \(\beta =\max [\alpha,f(\alpha)]\), if \(0<\alpha <0.065\) with \[ f(\alpha)=2(\alpha +1)^{-1}\{[(\Gamma (\alpha +1)(1+2\alpha)(2+\alpha)^{1- 2\alpha})/(2^{1-\alpha})]^{2/\alpha}-0.503\}^{-1}. \]
    0 references
    0 references
    Bessel functions
    0 references
    Legendre polynomials
    0 references
    ultraspherical polynomial
    0 references

    Identifiers