Positive solution of a singular nonlinear third-order periodic boundary value problem (Q5946102)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Positive solution of a singular nonlinear third-order periodic boundary value problem |
scientific article; zbMATH DE number 1658299
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Positive solution of a singular nonlinear third-order periodic boundary value problem |
scientific article; zbMATH DE number 1658299 |
Statements
Positive solution of a singular nonlinear third-order periodic boundary value problem (English)
0 references
16 September 2002
0 references
singular nonlinear third-order
0 references
periodic boundary value problem
0 references
a priori estimates
0 references
normal cone
0 references
Schauder fixed-point theorem
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
0 references
Here, the authors study the nonlinear periodic boundary value problem NEWLINE\[NEWLINEu'''+\rho^3 u=f(t,u),\;0\leq t\leq 2\pi, \quad u^{(i)}(0)= u^{(i)}(2\pi), \;i=0,1,2, \tag{A}NEWLINE\]NEWLINE where \(\rho\) is a positive constant.NEWLINENEWLINENEWLINEA function \(u(t)\) is said to be a positive solution to problem (A), if it satisfiesNEWLINENEWLINENEWLINE(1) \(u\in C^2\langle 0,2\pi \rangle\), \(u^{(i)}(0)= u^{(i)}(2\pi)\), \(i=0,1,2\);NEWLINENEWLINENEWLINE(2) \(u'''\) exists a.e. and \(u(t)>0\) on \(\langle 0,2\pi\rangle\);NEWLINENEWLINENEWLINE(3) \(u'''(t)+\rho^3 u(t)= f(t,u(t))\) a.e. on \(\langle 0,2\pi \rangle\).NEWLINENEWLINENEWLINEUnder certain (real?) hypotheses, by employing perturbation technique and Schauder fixed-point theorem, there is proved, that problem (A) has at least one positive solution if \(\rho\in (0,{1 \over\sqrt 3})\).
0 references