Perturbed iterative process for fixed points of multivalued \(\phi\)-hemicontractive mappings in Banach spaces (Q5948696)

From MaRDI portal





scientific article; zbMATH DE number 1671920
Language Label Description Also known as
English
Perturbed iterative process for fixed points of multivalued \(\phi\)-hemicontractive mappings in Banach spaces
scientific article; zbMATH DE number 1671920

    Statements

    Perturbed iterative process for fixed points of multivalued \(\phi\)-hemicontractive mappings in Banach spaces (English)
    0 references
    0 references
    12 November 2001
    0 references
    fixed points
    0 references
    multivalued \(\phi\)-hemicontractive operators
    0 references
    This article deals with fixed points of multivalued \(\phi\)-hemicontractive operators in an arbitrary real Banach space \(X\) (\(A: K\to 2^K\) is a multivalued \(\phi\)-hemicontractive if there exist some \(x^*\in K\) and a strictly increasing function \(\phi: [0,\infty)\to [0,\infty)\) \((\phi(0)= 0)\) such that \((\xi- x^*,j(x-x^*))\leq\|x- x^*\|^2- \phi(\|x- x^*\|)\|- x^*\|\) (\(\xi\in Tx\), \(x\in K\)), \(K\) is a nonempty closed subset of \(X\), \(J\) is the duality mapping for \(X\)).NEWLINENEWLINENEWLINEThe main result is the description of conditions under which iterations NEWLINE\[NEWLINEx_{n+1}\in (1- \alpha_n)x_n+ \alpha_n Ty_n+ \alpha e_n,\quad y_n\in (1- \beta_n) x_n+ \beta_n Tx_n+ \beta_n f_n,\quad n= 0,1,\dotsNEWLINE\]NEWLINE converge to a unique fixed point of \(T\).
    0 references

    Identifiers