À la recherche de petites sommes d'exponentielles. (In search of small exponential sums) (Q5956590)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: À la recherche de petites sommes d'exponentielles. (In search of small exponential sums) |
scientific article; zbMATH DE number 1710120
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | À la recherche de petites sommes d'exponentielles. (In search of small exponential sums) |
scientific article; zbMATH DE number 1710120 |
Statements
À la recherche de petites sommes d'exponentielles. (In search of small exponential sums) (English)
0 references
21 February 2002
0 references
complete exponential sums
0 references
finite field
0 references
Salié sum
0 references
monodromy
0 references
Sato-Tate conjecture
0 references
small values
0 references
Kloosterman sum
0 references
0 references
0 references
0 references
Let NEWLINE\[NEWLINES(m,n)= \sum_{t\pmod n} e(mf(t)/n))NEWLINE\]NEWLINE be the exponential sum associated with a fixed rational function \(f(X)\). NEWLINENEWLINENEWLINEIf \(f\) is nonconstant, Weil's estimates show that \(S(m,n)\ll n^{1/2+\varepsilon}\) as \(n\to\infty\). Although this bound is essentially best possible, it is conjectured that \(S(1,n)\), for example, can be considerably smaller than \(n^{1/2}\) for suitable \(n\). NEWLINENEWLINENEWLINEThe present paper establishes this for a wide variety of functions \(f\). This is done by taking \(n\) as a product of two primes. In the case of the classical Kloosterman sum, for example, one has NEWLINE\[NEWLINE|K(1,1;pq)|\leq (\sqrt{pq})^{5/6+ \varepsilon}NEWLINE\]NEWLINE for infinitely many pairs \(p,q\), for any \(\varepsilon> 0\). NEWLINENEWLINENEWLINEThe proof begins with the observation that NEWLINE\[NEWLINES(1,pq)= S(\overline{p},q) S(\overline{q},p).NEWLINE\]NEWLINE Hence, it suffices for \(S(\overline{p},q)\) to be small. Taking \(q\) to be fixed and allowing \(p\) to vary, this becomes a problem of ``horizontal'' distribution -- the more tractable type.
0 references