Hierarchical Weyl transforms and the heat semigroup of the hierarchical twisted Laplacian (Q601087)

From MaRDI portal





scientific article; zbMATH DE number 5809987
Language Label Description Also known as
English
Hierarchical Weyl transforms and the heat semigroup of the hierarchical twisted Laplacian
scientific article; zbMATH DE number 5809987

    Statements

    Hierarchical Weyl transforms and the heat semigroup of the hierarchical twisted Laplacian (English)
    0 references
    0 references
    0 references
    3 November 2010
    0 references
    The hierarchical twisted Laplacian is defined as \[ L_{\tau}=-\frac 12 (Z_{\tau} \bar Z_{\tau}+\bar Z_{\tau} Z_{\tau}), \] where for \(z=\xi+i|v|\), \(v=(v_1,v_2,\dots,v_m)\in \mathbb{R}^m\), \[ \begin{aligned} \frac \partial{\partial z}&=\frac \partial{\partial \xi}-i\sum_{l=1}^m\frac \partial{\partial v_l}+\frac i2 (1-\frac1m)|v|, \\ \frac \partial{\partial \bar z}&=\frac \partial{\partial \xi}+i\sum_{l=1}^m\frac \partial{\partial v_l}+\frac i2 (1-\frac1m)|v|,\\ Z&=\frac \partial {\partial z} +\frac 12 \bar z,\\ \bar Z&=\frac \partial {\partial \bar z} -\frac 12 z. \end{aligned} \] In this paper, the authors introduce hierarchical Weyl transforms based on multilinear Wigner transforms and prove a series of analogous properties of the classical Weyl transforms. By these results, they compute the heat semigroup for hierarchical twisted convolutions.
    0 references
    multilinear Fourier-Wigner transforms
    0 references
    multilinear Wigner transforms
    0 references
    hierarchical Weyl transforms
    0 references
    hierarchical twisted Laplacian
    0 references
    Hermite functions
    0 references
    twisted convolutions
    0 references
    heat semigroup
    0 references
    0 references

    Identifiers