A novel parallel algorithm based on the Gram-Schmidt method for tridiagonal linear systems of equations (Q624683)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A novel parallel algorithm based on the Gram-Schmidt method for tridiagonal linear systems of equations |
scientific article; zbMATH DE number 5849025
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A novel parallel algorithm based on the Gram-Schmidt method for tridiagonal linear systems of equations |
scientific article; zbMATH DE number 5849025 |
Statements
A novel parallel algorithm based on the Gram-Schmidt method for tridiagonal linear systems of equations (English)
0 references
9 February 2011
0 references
Summary: We introduce a new parallel algorithm based on the Gram-Schmidt orthogonalization method. This parallel algorithm can find almost exact solutions of tridiagonal systems of linear equations in an efficient way. The system of equations is partitioned proportional to number of processors, and each partition is solved by a processor with a minimum request from the other partitions' data. The considerable reduction in data communication between processors causes interesting speedup. The relationships between partitions approximately disappear if some columns are switched. Hence, the speed of computation increases, and the computational cost decreases. Consequently, obtained results show that the suggested algorithm is considerably scalable. In addition, this method of partitioning can significantly decrease the computational cost on a single processor and make it possible to solve greater systems of equations. To evaluate the performance of the parallel algorithm, speedup and efficiency are presented. The results reveal that the proposed algorithm is practical and efficient.
0 references
numerical examples
0 references
parallel algorithm
0 references
Gram-Schmidt orthogonalization
0 references
tridiagonal systems of linear equations
0 references
method of partitioning
0 references
performance
0 references
efficiency
0 references
0 references
0 references
0 references
0 references