Lower bounds for the smallest singular value via permutation matrices (Q6570476)

From MaRDI portal





scientific article; zbMATH DE number 7879376
Language Label Description Also known as
English
Lower bounds for the smallest singular value via permutation matrices
scientific article; zbMATH DE number 7879376

    Statements

    Lower bounds for the smallest singular value via permutation matrices (English)
    0 references
    0 references
    0 references
    0 references
    10 July 2024
    0 references
    The authors start by recalling some known lower bounds for the smallest singular value \(\sigma_n(A)\) of a matrix \(A\). Then they explain the application of permutation matrices in order to improve the following bound given in [\textit{C. R. Johnson}, Linear Algebra Appl. 112, 1--7 (1989; Zbl 0723.15013)].\NFor an \(n\times m\) matrix \(A=(a_{i,j})\) with \(n\le m\), assuming the singular values are arranged in decreasing order, the singular value \(\sigma_n(A)\) satisfies\N\[\N\sigma_n(A)\ge \underset{1\le k\le n}{\min}\left\{|a_{k,k}|-\frac{1}{2}\left[\sum_{i=1, i\neq k}^n|a_{k,i}|+\sum_{i=1,i\neq k}^n|a_{i,k}|\right]\right\}.\N\]
    0 references
    smallest singular value
    0 references
    permutation matrices
    0 references
    lower bound
    0 references

    Identifiers