Lower bounds for the smallest singular value via permutation matrices (Q6570476)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Lower bounds for the smallest singular value via permutation matrices |
scientific article; zbMATH DE number 7879376
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Lower bounds for the smallest singular value via permutation matrices |
scientific article; zbMATH DE number 7879376 |
Statements
Lower bounds for the smallest singular value via permutation matrices (English)
0 references
10 July 2024
0 references
The authors start by recalling some known lower bounds for the smallest singular value \(\sigma_n(A)\) of a matrix \(A\). Then they explain the application of permutation matrices in order to improve the following bound given in [\textit{C. R. Johnson}, Linear Algebra Appl. 112, 1--7 (1989; Zbl 0723.15013)].\NFor an \(n\times m\) matrix \(A=(a_{i,j})\) with \(n\le m\), assuming the singular values are arranged in decreasing order, the singular value \(\sigma_n(A)\) satisfies\N\[\N\sigma_n(A)\ge \underset{1\le k\le n}{\min}\left\{|a_{k,k}|-\frac{1}{2}\left[\sum_{i=1, i\neq k}^n|a_{k,i}|+\sum_{i=1,i\neq k}^n|a_{i,k}|\right]\right\}.\N\]
0 references
smallest singular value
0 references
permutation matrices
0 references
lower bound
0 references