Schur-Weyl duality for twin groups (Q6594716)

From MaRDI portal





scientific article; zbMATH DE number 7903037
Language Label Description Also known as
English
Schur-Weyl duality for twin groups
scientific article; zbMATH DE number 7903037

    Statements

    Schur-Weyl duality for twin groups (English)
    0 references
    0 references
    0 references
    28 August 2024
    0 references
    Let \(\mathrm{TW}_{n}=\big \langle t_{1}, \ldots t_{n} \; \big | \; t_{i}^{2}, [t_{i},t_{j}] \mbox{ if } | i-j | >0 \big \rangle\) be twin group on \(n\) strands.\N\NThe authors find a new instance of semisimple Schur-Weyl duality for tensor powers of a natural \(n\)-dimensional reflection representation of \(\mathrm{TW}_{n}\), depending on a parameter \(q\). At \(q=1\), the representation coincides with the natural permutation representation of the symmetric group, so the new Schur-Weyl duality may be regarded as a \(q\)-analogue of the one motivating the definition of the partition algebra.
    0 references
    0 references
    twin group
    0 references
    symmetric group
    0 references
    Schur-Weyl duality
    0 references
    tensor power
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references