Smooth modules of the super \(\mathcal{W}\)-algebra \(\mathcal{SW}(\frac{3}{2}, \frac{3}{2})\) of Neveu-Schwarz type (Q6632109)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Smooth modules of the super \(\mathcal{W}\)-algebra \(\mathcal{SW}(\frac{3}{2}, \frac{3}{2})\) of Neveu-Schwarz type |
scientific article; zbMATH DE number 7938149
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Smooth modules of the super \(\mathcal{W}\)-algebra \(\mathcal{SW}(\frac{3}{2}, \frac{3}{2})\) of Neveu-Schwarz type |
scientific article; zbMATH DE number 7938149 |
Statements
Smooth modules of the super \(\mathcal{W}\)-algebra \(\mathcal{SW}(\frac{3}{2}, \frac{3}{2})\) of Neveu-Schwarz type (English)
0 references
4 November 2024
0 references
The super \(W\)-algebra \(SW(\frac{3}{2},\frac{3}{2})\) (see [\textit{J. M. Figueroa-O'Farrill} and \textit{S. Schrans}, Int. J. Mod. Phys. A 7, No. 3, 591--617 (1992; Zbl 0801.17032)]) is a supersymmetric conformal algebra that incorporates an additional covariant supersymmetric field \(\Phi\) of dimension \((\frac{3}{2},2)\).\N\NIn the paper underestablish a connection between simple smooth modules over \(L\) and simple modules over specific finite-dimensional solvable Lie superalgebras. This relation is used to study smooth modules over the considered super \(W\)-algebras. In particular several examples including simple Whittaker modules and highest weight modules are given.
0 references
\(\mathcal{SW}(\frac{3}{2}, \frac{3}{2})\) algebra
0 references
smooth module
0 references
simple module
0 references
0 references
0 references
0 references
0 references
0 references