A novel nonsymmetric \(K\)-Lanczos algorithm for the generalized nonsymmetric \(K\)-eigenvalue problems (Q676019)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A novel nonsymmetric \(K\)-Lanczos algorithm for the generalized nonsymmetric \(K\)-eigenvalue problems |
scientific article; zbMATH DE number 991117
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A novel nonsymmetric \(K\)-Lanczos algorithm for the generalized nonsymmetric \(K\)-eigenvalue problems |
scientific article; zbMATH DE number 991117 |
Statements
A novel nonsymmetric \(K\)-Lanczos algorithm for the generalized nonsymmetric \(K\)-eigenvalue problems (English)
0 references
11 June 1998
0 references
The generalized eigenvalue problem \(Mx=\lambda Nx\) is studied, where the matrices \(M\), \(N\) have certain symmetries, namely the \(K_{\pm}\)-structure. A new algorithm, the nonsymmetric \(K\)-Lanczos algorithm, is developed to calculate extreme eigenvalues. For this a tridiagonalization procedure preserving the symmetries is given. It generalizes an algorithm by \textit{U. Flaschka} [Eine Variante des Lanczos-Algorithmus für große, dünn besetzte symmetrische Matrizen mit Blockstruktur, Diss. Univ. Bielefeld (1992; Zbl 0830.65023)] in the case that \(N^{-1}M\) is in addition symmetric. This algorithm can be viewed as a \(2\times 2\)-block nonsymmetric Lanczos algorithm. Numerical experiments are reported.
0 references
nonsymmetric Lanczos algorithm
0 references
numerical experiments
0 references
generalized eigenvalue problem
0 references
extreme eigenvalues
0 references
tridiagonalization
0 references