The majorization function and the index of invariant subspaces in the Bergman spaces. (Q698319)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The majorization function and the index of invariant subspaces in the Bergman spaces. |
scientific article; zbMATH DE number 1802582
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The majorization function and the index of invariant subspaces in the Bergman spaces. |
scientific article; zbMATH DE number 1802582 |
Statements
The majorization function and the index of invariant subspaces in the Bergman spaces. (English)
0 references
13 May 2003
0 references
The index of an invariant subspace \({\mathcal M}\) of a Bergman space \(L^2_a\) on the open unit disc is defined by \(\text{ind\;}{\mathcal M}= \dim\;{\mathcal M}\ominus z{\mathcal M}\). The authors provide a strong link between high index and nontangential boundary behaviour of the functions in an invariant subspace. For example, they show the following: Suppose that \({\mathcal M}\in \text{Lat}(M_z, L^2_a)\) and \(\text{ind }{\mathcal M}= 1\), where \(\text{Lat}(M_z,L^2_a)\) denotes the collection of invariant subspaces of the multiplication operator \(M_z\) on \(L^2_a\). If the majorization function \(k_{\mathcal M}\) has a positive nontangential limit inferior on a set of positive measure in the unit circle, then every \({\mathcal N}\in \text{Lat}(M_z,L^2_a)\) with \({\mathcal M}\subseteq{\mathcal N}\) has index 1. Conversely, if \(p= 2\) and if every invariant subspace \({\mathcal N}\) containing \({\mathcal M}\) has index one, then the nontangential limit inferior of \(k_{\mathcal M}\) is bounded away from zero on a set of positive measure.
0 references
index
0 references
invariant subspace
0 references
Bergman space
0 references
0 references
0 references
0 references
0 references
0.91552925
0 references
0.91222256
0 references
0.90154517
0 references
0.89968944
0 references
0.8979267
0 references
0 references
0.89659935
0 references
0.8963984
0 references
0.89501214
0 references