Transcendence of some power series for Liouville number arguments (Q723461)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Transcendence of some power series for Liouville number arguments |
scientific article; zbMATH DE number 6911915
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Transcendence of some power series for Liouville number arguments |
scientific article; zbMATH DE number 6911915 |
Statements
Transcendence of some power series for Liouville number arguments (English)
0 references
31 July 2018
0 references
Let \(\{ a_n\}_{n=1}^\infty\) and \(\{ b_n\}_{n=1}^\infty\) be sequences of rational integers such that \(a_n>1\) for all positive integers \(n\). Assume that \(\limsup_{n\to\infty}\frac{\log\mid b_n\mid}{\log a_n} <1< \liminf_{n\to\infty}\frac{\log a_{n+1}}{\log a_n}\). Let \(\alpha\) be a Liouville number. Under the special conditions the author proves that the sum of the series \(\sum_{n=1}^\infty\frac{b_n}{a_n}\alpha^n\) eighter rational number or transcendental number. The author obtains similar results when \(b_n\) belong to finite algebraic number field and for \(p\)-adic cases.
0 references
Liouville number
0 references
algebraic number field
0 references
\(p\)-adic number
0 references
power series
0 references
0 references
0 references
0 references