Approximations- und Fortsetzungssätze für konvexe Funktionen (Q760635)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Approximations- und Fortsetzungssätze für konvexe Funktionen |
scientific article; zbMATH DE number 3884759
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Approximations- und Fortsetzungssätze für konvexe Funktionen |
scientific article; zbMATH DE number 3884759 |
Statements
Approximations- und Fortsetzungssätze für konvexe Funktionen (English)
0 references
1985
0 references
We show that a uniformly continuous, convex function f on a convex subset A of a locally convex space E may be approximated uniformly on A by a sequence \((f_ n)\) of continuous convex functions on E. If f is uniformly continuous with respect to the weak topology and if A is bounded then we may require that \(f_ n\) is the supremum of a finite number of continuous affine functions. If f is Lipschitz-continuous then f can even be extended to a Lipschitz continuous convex function on the whole space.
0 references
convex subset
0 references
continuous affine functions
0 references
Lipschitz continuous convex function
0 references