On the inequality \(\sum_{r=1}^n \frac{x_r}{x_{r+1}+x_{r+2}} \ge \frac{n}{2}\) and some others (Q769641)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the inequality \(\sum_{r=1}^n \frac{x_r}{x_{r+1}+x_{r+2}} \ge \frac{n}{2}\) and some others |
scientific article; zbMATH DE number 3133641
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the inequality \(\sum_{r=1}^n \frac{x_r}{x_{r+1}+x_{r+2}} \ge \frac{n}{2}\) and some others |
scientific article; zbMATH DE number 3133641 |
Statements
On the inequality \(\sum_{r=1}^n \frac{x_r}{x_{r+1}+x_{r+2}} \ge \frac{n}{2}\) and some others (English)
0 references
1958
0 references
Es seien \(x_1,\ldots, x_n\) nichtnegative reelle Zahlen, und man setze \(x_{n+r} = x_r\). Verf. betrachtet die Ungleichung \[ (x_1 +\ldots + x_n)^2 \ge l \left[ \sum_{r=1}^n x_r(x_{r+1}+\ldots+ x_{r+a}) \right] \] wo \(l=\min [n/a, (2a+2)/a]\) ist. Er beweist, daß im Falle \(a = 2\) oder \(a = 3\) der gegebene Wert von \(l\) der beste ist, für den diese Ungleichung gilt. Mit beliebigem \(a\) wird die Ungleichung für \(n = a + 1\), \(n = a + 2\) und \(n\ge 2a\) bewiesen. Die übrigen Werte von \(n\) werden getrennt betrachtet.
0 references
inequalities
0 references
0.8686914
0 references
0 references
0.86082506
0 references