On some inequalities involving \((n!)^{1/n}\). II (Q1338467)

From MaRDI portal





scientific article; zbMATH DE number 698619
Language Label Description Also known as
English
On some inequalities involving \((n!)^{1/n}\). II
scientific article; zbMATH DE number 698619

    Statements

    On some inequalities involving \((n!)^{1/n}\). II (English)
    0 references
    0 references
    1 April 1996
    0 references
    Let \(G(n)\) be the geometric mean of the first \(n\) positive integers, that is, \(G(n)= (n!)^{1/n}\). Then \[ 1< 1+ {G(n)\over G(n- 1)}- {G(n+ 1)\over G(n)}< 1+ {1\over n}- {1\over n+ 1}< n {G(n+ 1)\over G(n)}- (n- 1) {G(n)\over G(n- 1)} \] holds for all \(n\geq 3\). [ For Part I see Rocky Mt. J. Math. 24, No. 3, 867-873 (1994; Zbl 0826.26005)].
    0 references
    inequalities
    0 references
    geometric mean
    0 references
    positive integers
    0 references
    0 references

    Identifiers