A counterexample for the Trotter product formula (Q789702)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A counterexample for the Trotter product formula |
scientific article; zbMATH DE number 3846281
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A counterexample for the Trotter product formula |
scientific article; zbMATH DE number 3846281 |
Statements
A counterexample for the Trotter product formula (English)
0 references
1984
0 references
An example is given of two linear m-accretive operators \(A_ 1\) and \(A_ 2\) whose sum is m-accretive but for which the associated product formulas \([S^{A_ 1}(\frac{t}{n})S^{A_ 2}(\frac{t}{n})]^ n\) and \([(I+\frac{t}{n}A_ 1)^{-1}(I+\frac{t}{n}A_ 2)^{-1}]^ n\) do not converge.
0 references
Trotter product formula
0 references
linear m-accretive operators
0 references
0 references
0.9322208
0 references
0.8608434
0 references
0.84519535
0 references
0.8448812
0 references
0.84364724
0 references
0.8364401
0 references
0.83573675
0 references
0.8346465
0 references
0 references