On an elaboration of M. Kac's theorem concerning eigenvalues of -\(\Delta\) in a region with randomly distributed small obstacles (Q796899)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On an elaboration of M. Kac's theorem concerning eigenvalues of -\(\Delta\) in a region with randomly distributed small obstacles |
scientific article; zbMATH DE number 3866315
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On an elaboration of M. Kac's theorem concerning eigenvalues of -\(\Delta\) in a region with randomly distributed small obstacles |
scientific article; zbMATH DE number 3866315 |
Statements
On an elaboration of M. Kac's theorem concerning eigenvalues of -\(\Delta\) in a region with randomly distributed small obstacles (English)
0 references
1983
0 references
Cette note annonce la démonstration d'une approximation du spectre du laplacien avec conditions aux limites de Dirichlet par une méthode probabiliste due à \textit{M. Kac} [Rocky Mt. J. Math. 4, 511-537 (1974; Zbl 0314.47006)].
0 references
Kac's theorem
0 references
Dirichlet condition
0 references
Wiener sausage
0 references