On a generalized Minkowski inequality and its relation to dominates for t-norms (Q800510)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On a generalized Minkowski inequality and its relation to dominates for t-norms |
scientific article; zbMATH DE number 3875589
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On a generalized Minkowski inequality and its relation to dominates for t-norms |
scientific article; zbMATH DE number 3875589 |
Statements
On a generalized Minkowski inequality and its relation to dominates for t-norms (English)
0 references
1984
0 references
Der Verf. beweist u.a. den folgenden Satz: Es sei h eine für alle nichtnegativen Zahlen definierte und differenzierbare, streng wachsende konvexe Funktion, für die \(h(0)=0\) und \(h(x)\geq 0(x>0)\) gilt. Falls \(x\mapsto\log h'(e^ x)\) konvex ist, dann ist \[ h^{- 1}(h(x+y)+h(u+v))\leq h^{-1}(h(x)+h(u))+h^{-1}(h(y)+h(v)) \] für alle x,y,u,\(v\geq 0\) gültig. Daraus zieht er Folgerungen bezüglich der Relation ''dominiert'' in der Theorie der Dreiecksnormen [vgl. \textit{B. Schweizer} und \textit{A. Sklar}, Probabilistic metric spaces (1983; Zbl 0546.60010)].
0 references
generalized Minkowski inequality
0 references
dominates for strict t-norms
0 references
0 references
0.8819636
0 references
0 references
0.87874156
0 references
0.8771834
0 references
0.87569255
0 references