Dupliquée d'une algèbre et le théorème d'Etherington. (Duplicate of an algebra and Etherington's theorem) (Q810619)

From MaRDI portal





scientific article; zbMATH DE number 4214228
Language Label Description Also known as
English
Dupliquée d'une algèbre et le théorème d'Etherington. (Duplicate of an algebra and Etherington's theorem)
scientific article; zbMATH DE number 4214228

    Statements

    Dupliquée d'une algèbre et le théorème d'Etherington. (Duplicate of an algebra and Etherington's theorem) (English)
    0 references
    0 references
    0 references
    1991
    0 references
    The authors prove that the duplicate algebra D(A) of an algebra A over a commutative field K is baric, a T-algebra or a genetic algebra, as soon as \(A^ 2\) has the same property. Moreover, the duplicate of each Bernstein algebra is genetic (if characteristic \(K\neq 2)\). Furthermore, if K is a commutative ring with unity, if the K-module \(A^ 2\) is projective and \(A^ 2=A\), then the derivation algebras of A and D(A) are isomorphic. Finally the authors make clear that, although \(D(A\otimes_ KB)\simeq D(A)\otimes_ KD(B)\) if D indicates the noncommutative duplicate, this isomorphism is no longer valid for a commutative duplicate.
    0 references
    duplicate algebra
    0 references
    Bernstein algebra
    0 references
    derivation algebras
    0 references
    commutative duplicate
    0 references

    Identifiers