A generalized Weil representation for \(\text{SL}_*(2,A_m)\), where \(A_m=\mathbb{F}_q[x]\langle x^m\rangle\). (Q837037)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A generalized Weil representation for \(\text{SL}_*(2,A_m)\), where \(A_m=\mathbb{F}_q[x]\langle x^m\rangle\). |
scientific article; zbMATH DE number 5602638
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A generalized Weil representation for \(\text{SL}_*(2,A_m)\), where \(A_m=\mathbb{F}_q[x]\langle x^m\rangle\). |
scientific article; zbMATH DE number 5602638 |
Statements
A generalized Weil representation for \(\text{SL}_*(2,A_m)\), where \(A_m=\mathbb{F}_q[x]\langle x^m\rangle\). (English)
0 references
10 September 2009
0 references
Let \(k\) be a finite field of odd order, \(m\) a positive integer, \(A_m=k[x]/(x^m)\). The involution \(^*\) on \(A_m\) is defined by \(x^*=-x\). The other involutions are classified. A presentation of the unitary group \(\text{SL}_*(2,A_m)\) of the standard skew-Hermitian matrix \(\left(\begin{smallmatrix} 0&1\\ -1& 0\end{smallmatrix}\right)\) is given, and a Weil representation of this group is constructed.
0 references
Weil representations
0 references
twisted groups
0 references
rings with involution
0 references
special linear groups
0 references
presentations
0 references
0 references
0 references
0.8836403
0 references
0 references
0.8774794
0 references
0.86462283
0 references