Some remarks on \(L^{p}\) - \(L^{q}\) estimates for some singular fractional integral operators (Q882023)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Some remarks on \(L^{p}\) - \(L^{q}\) estimates for some singular fractional integral operators |
scientific article; zbMATH DE number 5156434
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Some remarks on \(L^{p}\) - \(L^{q}\) estimates for some singular fractional integral operators |
scientific article; zbMATH DE number 5156434 |
Statements
Some remarks on \(L^{p}\) - \(L^{q}\) estimates for some singular fractional integral operators (English)
0 references
23 May 2007
0 references
In the paper \(L^p-L^q\) estimates for the operator \[ Af(x)= \int_{\mathbb{R}^d} f(x-y)\bigg( \prod_{i=1}^{d-1} | y_i| ^{\gamma_i-1} \bigg) d\mu(y), \;\; d\geq 2,\; \gamma_i>0, \] are studied, where \(\mu\) is the measure on \(R^d\) given by \[ \mu(E)= \int_{\mathbb{R}^{d-1}} \chi_E (x, \varphi(x)) \eta(x) dx \] with \(\varphi(x)= \sum_{i=1}^{d-1}\pm | x_i| ^{a_i}\) (\(1\neq a_i\in \mathbb{R}\)) and a smooth function \(\eta: \mathbb{R}^{d-1}\mapsto \mathbb{R}\) supported in \([-1,1]^{d-1}\).
0 references
Lebesgue spaces
0 references
\(L^p\) estimates
0 references
0.94590473
0 references
0.90951747
0 references
0.9059552
0 references