Comparaison des projecteurs de Bergman et Szegö et applications. (Comparison of the Bergman and Szegö projectors, and applications) (Q913036)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Comparaison des projecteurs de Bergman et Szegö et applications. (Comparison of the Bergman and Szegö projectors, and applications) |
scientific article; zbMATH DE number 4146386
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Comparaison des projecteurs de Bergman et Szegö et applications. (Comparison of the Bergman and Szegö projectors, and applications) |
scientific article; zbMATH DE number 4146386 |
Statements
Comparaison des projecteurs de Bergman et Szegö et applications. (Comparison of the Bergman and Szegö projectors, and applications) (English)
0 references
1990
0 references
Denote by B and S the Bergman and Szegö projections, respectively, associated to a bounded domain D in \({\mathbb{C}}^ n\). When comparing solutions to the \({\bar \partial}\)-equation minimizing \({\mathcal L}^ 2\)- norms over bD and over D, respectively, one is led to compare S-B. In the paper under review, the author considers strictly pseudoconvex domains and gives \({\mathcal L}^ p\)-type estimates \((1<p)\) for Su-Bu in terms of \({\bar \partial}u\). The method is to use the known asymptotic expansions of S and B, and to exhibit the principal part of S-B as an explicit integral operator. An application to \({\mathcal L}^ p(bD)\)-estimates for the canonical solution u-Bu to \({\bar \partial}u=f\) is also given.
0 references
Bergman projection
0 references
Szegö projection
0 references
asymptotic expansion
0 references
strictly pseudoconvex domains
0 references
0 references
0 references
0.88184375
0 references
0.79437244
0 references
0.7882048
0 references
0.7879901
0 references
0.7530293
0 references
0.75080776
0 references
0.74717224
0 references