Expansion and random walks in \(\text{SL}_d(\mathbb{Z}/p^n\mathbb{Z})\). I. (Q952512)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Expansion and random walks in \(\text{SL}_d(\mathbb{Z}/p^n\mathbb{Z})\). I. |
scientific article; zbMATH DE number 5365142
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Expansion and random walks in \(\text{SL}_d(\mathbb{Z}/p^n\mathbb{Z})\). I. |
scientific article; zbMATH DE number 5365142 |
Statements
Expansion and random walks in \(\text{SL}_d(\mathbb{Z}/p^n\mathbb{Z})\). I. (English)
0 references
12 November 2008
0 references
Summary: We prove that Cayley graphs of \(\text{SL}_d(\mathbb{Z}/p^n\mathbb{Z})\) are expanders with respect to the projection of any fixed elements in \(\text{SL}_2(\mathbb{Z})\) generating a Zariski-dense subgroup.
0 references
Zariski dense subgroups
0 references
Cayley graphs
0 references
expander families
0 references
0 references
0 references
0 references
0.9925322
0 references
0 references
0.93514776
0 references
0.86460495
0 references
0.8645253
0 references
0.8596621
0 references
0.8503837
0 references
0 references