Improving bounds for eigenvalues of complex matrices using traces (Q996335)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Improving bounds for eigenvalues of complex matrices using traces |
scientific article; zbMATH DE number 5190978
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Improving bounds for eigenvalues of complex matrices using traces |
scientific article; zbMATH DE number 5190978 |
Statements
Improving bounds for eigenvalues of complex matrices using traces (English)
0 references
14 September 2007
0 references
Let \(A\) be a complex matrix of order \(n\) with eigenvalues \(\lambda_j, j=1,2,\dots,n\) and \(m\) be any integer satisfying rank\(A\leq m\leq n\). The bound for \(\sum|\lambda_j|^2\) by \textit{R. Kress, H.-L. de Vries}, and \textit{R. Wegmann} [ibid. 8, 109--120 (1974; Zbl 0273.15018)] is strengthened. Furthermore, new bounds are presented to estimate the spectral radius of \(A\) using \(m\) and traces of \(A, A^2, A^*A\) and \(A^*A-AA^*\). We also improve some bounds of \textit{H. Wolkowicz} and \textit{G. P. H. Styan} [ibid. 29, 471--506 (1980; Zbl 0435.15015); ibid. 31, 1--17 (1980; Zbl 0434.15003)] and a previous localization of eigenvalues in rectangular or elliptic regions using traces. Several simple lower bounds for the spectral radius are given, involving tr\(A\), tr\(A^2\), tr\(A^3\) and \(m\).
0 references
complex matrix
0 references
eigenvalue bounds
0 references
spectral radius bounds
0 references
localization
0 references
traces
0 references
0 references
0.9246591
0 references
0.9202077
0 references
0 references
0.90780675
0 references
0.90181947
0 references
0.89658093
0 references
0.89563334
0 references
0.8954167
0 references