Instantaneous gap loss of Sobolev regularity for the 2D incompressible Euler equations
DOI10.1215/00127094-2023-0052zbMATH Open1547.35518MaRDI QIDQ6610104
Wojciech S. Ożański, Luis Martínez-Zoroa, Diego Córdoba
Publication date: 24 September 2024
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Smoothness and regularity of solutions to PDEs (35B65) Ill-posed problems for PDEs (35R25) Existence problems for PDEs: global existence, local existence, non-existence (35A01) Existence, uniqueness, and regularity theory for incompressible inviscid fluids (76B03) Positive solutions to PDEs (35B09) Euler equations (35Q31) Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness (35A02)
Cites Work
- Hitchhiker's guide to the fractional Sobolev spaces
- Exponential growth of the vorticity gradient for the Euler equation on the torus
- Small scale creation for solutions of the incompressible two-dimensional Euler equation
- Existence of weak solutions for the incompressible Euler equations
- On admissibility criteria for weak solutions of the Euler equations
- Ordinary differential equations, transport theory and Sobolev spaces
- The Euler equations as a differential inclusion
- Loss of smoothness and energy conserving rough weak solutions for the \(3d\) Euler equations
- Remarks on the breakdown of smooth solutions for the 3-D Euler equations
- Über die Bewegung einer Flüssigkeit, die in ein seinen Ort änderndes Gefäß eingeschlossen ist.
- Ill-posedness for the incompressible Euler equations in critical Sobolev spaces
- Über einige Existenzprobleme der Hydrodynamik. IV: Stetigkeitssätze. Eine Begründung der Helmholtz-Kirchhoffschen Theorie geradliniger Wirbelfäden.
- Un théorème sur l'existence du mouvement plan d'un fluide parfait, homogene, incompressible, pendant un temps infiniment long
- Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit
- Remarks on the Euler equation
- Finite time blowup of 2D Boussinesq and 3D Euler equations with \(C^{1, \alpha}\) velocity and boundary
- Finite-time singularity formation for \(C^{1,\alpha}\) solutions to the incompressible Euler equations on \(\mathbb{R}^3\)
- Non existence and strong ill-posedness in \(C^k\) and Sobolev spaces for SQG
- A simple ill-posedness proof for incompressible Euler equations in critical Sobolev spaces
- Small scale creation in active scalars
- Strong ill-posedness of logarithmically regularized 2D Euler equations in the borderline Sobolev space
- Loss of regularity for the 2D Euler equations
- Loss of regularity for the continuity equation with non-Lipschitz velocity field
- \(L^\infty\) ill-posedness for a class of equations arising in hydrodynamics
- Strong illposedness of the incompressible Euler equation in integer \(C^m\) spaces
- Strong ill-posedness of the incompressible Euler equation in borderline Sobolev spaces
- Groups of diffeomorphisms and the motion of an incompressible fluid
- Nonstationary flows of viscous and ideal fluids in \(R^3\)
- Local ill-posedness of the incompressible Euler equations in \(C^1\) and \(B^1_{\infty,1}\)
- Vorticity and incompressible flow
- Commutator estimates and the euler and navier-stokes equations
- Perte de régularité pour les équations d’ondes sur-critiques
- Non-stationary flow of an ideal incompressible liquid
- Instability and Non-uniqueness for the 2D Euler Equations, after M. Vishik
Related Items (3)
This page was built for publication: Instantaneous gap loss of Sobolev regularity for the 2D incompressible Euler equations
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6610104)