The \(\overline{\partial}\)-equation on the Hartogs triangles in \(\mathbb{C}^2\) and \({\mathbb{CP}}^2\)
From MaRDI portal
Publication:6616792
DOI10.1007/978-981-99-9506-6_12zbMATH Open1548.32016MaRDI QIDQ6616792
Publication date: 9 October 2024
Research exposition (monographs, survey articles) pertaining to several complex variables and analytic spaces (32-02) Integral representations; canonical kernels (Szeg?, Bergman, etc.) (32A25) Special domains (Reinhardt, Hartogs, circular, tube, etc.) in (mathbb{C}^n) and complex manifolds (32Q02)
Cites Work
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- Title not available (Why is that?)
- The Diederich-Fornæss exponent and non-existence of Stein domains with Levi-flat boundaries
- On the Hausdorff property of some Dolbeault cohomology groups
- Régularité höldérienne de l'opérateur \(\bar\partial\) sur le triangle de Hartogs. (Hölder regularity of the \(\bar\partial\) operator on the Hartogs triangle.)
- The \(\bar\partial\)-Cauchy problem and nonexistence of Lipschitz Levi-flat hypersurfaces in \(\mathbb{C}P^n\) with \(n \geq 3\)
- Sobolev estimates for the Cauchy-Riemann complex on \(C^{1}\) pseudoconvex domains
- On the smoothness of Levi-foliations
- Un example de domaine pseudoconvexe ou l'équation \(\overline\partial u=f\) n'admet pas de solution bornée pour \(f\) bornée
- Fonctions plurisousharmoniques d'exhaustion bornees et domaines taut
- Prolongement des fonctions holomorphes bornees et métrique de Caratheodory
- Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions
- A note on projective Levi flats and minimal sets of algebraic foliations
- Nonexistence of smooth Levi-flat hypersurfaces in complex projective spaces of dimension \(\geq 3\)
- A Sobolev mapping property of the Bergman kernel
- Hearing pseudoconvexity in Lipschitz domains with holes via \({\bar{\partial }}\)
- Bounded plurisubharmonic exhaustion functions for Lipschitz pseudoconvex domains in \(\mathbb {CP}^n\)
- The null space of the \(\overline \partial \)-Neumann operator.
- Estimates for the \(\bar\partial\)-Neumann problem and nonexistence of \(C^2\) Levi-flat hypersurfaces in \(\mathbb{C} P^n\)
- Lectures on the \(L^2\)-Sobolev theory of the \(\bar\partial\)-Neumann problem
- \(L^ 2\) estimates and existence theorems for the \(\partial\)-operator
- Harmonic integrals on strongly pseudo-convex manifolds. I
- Harmonic integrals on strongly pseudo-convex manifolds. II
- Erratum to: Regularity of \(\overline \partial\) on pseudoconcave compacts and applications
- Sobolev estimates and duality for \(\overline{\partial}\) on domains in \(\mathbb{CP}^n\)
- Extendability and the \(\overline{\partial}\) operator on the Hartogs triangle
- A global estimate for the Diederich-Fornaess index of weakly pseudoconvex domains
- A Survey on Levi Flat Hypersurfaces
- \(L^{2}\) Serre duality on domains in complex manifolds and applications
- The Hartogs Triangle in Complex Analysis
- Non-closed Range Property for the Cauchy-Riemann Operator
- Global Solvability and Regularity for $\overline\partial$ on an Annulus Between Two Weakly Pseudo-Convex Domains
- Bounded p.s.h. functions and pseudoconvexity in Kähler manifold
- Global Regularity for $\overline \partial$ on Weakly Pseudo-Convex Manifolds
- Solving \overline{∂} with prescribed support on Hartogs triangles in ℂ² and ℂℙ²
- Estimations $\mathrm{L}^2$ pour l'opérateur $\bar \partial$ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète
- On the $L^2$-Dolbeault cohomology of annuli
- The Neumann Problem for the Cauchy-Riemann Complex. (AM-75)
- The Identity of Weak and Strong Extensions of Differential Operators
- Weak and strong extensions of differential operators
This page was built for publication: The \(\overline{\partial}\)-equation on the Hartogs triangles in \(\mathbb{C}^2\) and \({\mathbb{CP}}^2\)
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6616792)