The following pages link to Computing the bump number is easy (Q1106863):
Displaying 12 items.
- Minimizing the maximum bump cost in linear extensions of a poset (Q385489) (← links)
- The connection between the bump number problem and flow-shop scheduling with precedence constraints (Q753673) (← links)
- Multigraph realizations of degree sequences: Maximization is easy, minimization is hard (Q957360) (← links)
- Computing the bump number with techniques from two-processor scheduling (Q1106865) (← links)
- Minimizing bumps in ordered sets by substitution decomposition (Q1122595) (← links)
- Finding Hamiltonian paths in cocomparability graphs using the bump number algorithm (Q1198484) (← links)
- Hamiltonian cycle is polynomial on cocomparability graphs (Q1201106) (← links)
- 1-tough cocomparability graphs are hamiltonian (Q1363656) (← links)
- The setup polyhedron of series-parallel posets (Q1372744) (← links)
- Jump number maximization for proper interval graphs and series-parallel graphs (Q1818782) (← links)
- The longest path problem is polynomial on cocomparability graphs (Q1939666) (← links)
- The Longest Path Problem is Polynomial on Cocomparability Graphs (Q3057610) (← links)