Pages that link to "Item:Q1568913"
From MaRDI portal
The following pages link to Sharp size estimates for capillary free surfaces without gravity. (Q1568913):
Displaying 11 items.
- A minimum principle for a soap film problem in \({\mathbb{R}^{2}}\) (Q353366) (← links)
- On capillary free surfaces in the absence of gravity (Q1247766) (← links)
- A sharp minimum principle for the problem of torsionally rigidity (Q1289051) (← links)
- Uniqueness of critical points and maximum principles of the singular minimal surface equation (Q1710726) (← links)
- Minimum principles and a priori estimates for some translating soliton type problems (Q2274380) (← links)
- A sharp height estimate for the spacelike constant mean curvature graph in the Lorentz-Minkowski space (Q2397683) (← links)
- Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature (Q2438958) (← links)
- On some estimates for a fluid surface in a short capillary tube (Q2451455) (← links)
- Maximum principles for a class of nonlinear elliptic boundary value problems (Q2508031) (← links)
- Necessary conditions of solvability and isoperimetric estimates for some Monge-Ampère problems in the plane (Q5496255) (← links)
- The comparison of capillary surfaces heights in case of small gravity (Q5930176) (← links)