Pages that link to "Item:Q1677086"
From MaRDI portal
The following pages link to On the essential spectrum of quantum graphs (Q1677086):
Displaying 22 items.
- Zero measure and singular continuous spectra for quantum graphs (Q778103) (← links)
- Fredholm properties of band-dominated operators on periodic discrete structures (Q1042644) (← links)
- Spectral determinant on quantum graphs (Q1588733) (← links)
- Spectral estimates for infinite quantum graphs (Q1633631) (← links)
- Spectral theory of infinite quantum graphs (Q1991539) (← links)
- Asymptotically isospectral quantum graphs and generalised trigonometric polynomials (Q2310495) (← links)
- Zero modes of quantum graph Laplacians and an index theorem (Q2340947) (← links)
- Electromagnetic Schrödinger operators on periodic graphs with general conditions at vertices (Q2424752) (← links)
- Dirac operators on infinite quantum graphs (Q2674913) (← links)
- On multiplicity of a quantum graph spectrum (Q3083505) (← links)
- Numerical estimates of the essential spectra of quantum graphs with delta-interactions at vertices (Q4628953) (← links)
- (Q4684735) (← links)
- Concrete method for recovering the Euler characteristic of quantum graphs (Q5059995) (← links)
- Dirac Operators on $$ \mathbb {R}$$ with General Point Interactions (Q5118508) (← links)
- A Family of Diameter-Based Eigenvalue Bounds for Quantum Graphs (Q5126341) (← links)
- Parameter dependent differential operators on graphs and their applications (Q5148328) (← links)
- Elliptic differential operators on infinite graphs with general conditions on vertices (Q5207744) (← links)
- Fredholm theory of differential operators on periodic graphs (Q5234942) (← links)
- Essential spectrum of Schrödinger operators with 𝛿 and 𝛿^{′}-interactions on systems of unbounded smooth hypersurfaces in ℝⁿ (Q5241893) (← links)
- Spectral gap for quantum graphs and their edge connectivity (Q5326010) (← links)
- (Q5355533) (← links)
- A quantum Mermin–Wagner theorem for quantum rotators on two-dimensional graphs (Q5397747) (← links)