Pages that link to "Item:Q1971907"
From MaRDI portal
The following pages link to Dwork's conjecture on unit root zeta functions (Q1971907):
Displaying 23 items.
- Newton slopes for Artin-Schreier-Witt towers (Q261452) (← links)
- \(L\)-functions associated with families of toric exponential sums (Q404363) (← links)
- Meromorphy of the rank one unit root \(L\)-function revisited (Q405969) (← links)
- \(p\)-adic variation of unit root \(L\)-functions (Q523422) (← links)
- Improvements of the Weil bound for Artin-Schreier curves (Q641843) (← links)
- \(L\)-functions of symmetric products of the Kloosterman sheaf over \(Z\) (Q943361) (← links)
- Newton polygons for \(L\)-functions of exponential sums of polynomials of degree six over finite fields. (Q1867447) (← links)
- On an open problem of Niederreiter (Q1870025) (← links)
- Notes on isocrystals (Q2127208) (← links)
- Kloosterman sums and Hecke polynomials in characteristics 2 and 3 (Q2238907) (← links)
- Trivial factors for \(L\)-functions of symmetric products of Kloosterman sheaves (Q2426478) (← links)
- Rationality and meromorphy of zeta functions (Q2566176) (← links)
- Minimal slope conjecture of \(F\)-isocrystals (Q2689266) (← links)
- Functional equations of $L$-functions for symmetric products of the Kloosterman sheaf (Q3056575) (← links)
- Factorial and Noetherian subrings of power series rings (Q3085048) (← links)
- L-FUNCTIONS OF SYMMETRIC POWERS OF THE GENERALIZED AIRY FAMILY OF EXPONENTIAL SUMS (Q3115733) (← links)
- Higher rank case of Dwork’s conjecture (Q4501057) (← links)
- Rank one case of Dwork’s conjecture (Q4501058) (← links)
- The monodromy of unit-root <i>F</i>-isocrystals with geometric origin (Q5073329) (← links)
- $L$-functions of twisted diagonal exponential sums over finite fields (Q5295089) (← links)
- <i>L</i>-functions of<i>p</i>-adic characters (Q5408692) (← links)
- Partial zeta functions of algebraic varieties over finite fields (Q5927549) (← links)
- Unit roots of the unit root \(L\)-functions of Kloosterman family (Q6063246) (← links)