Pages that link to "Item:Q2077555"
From MaRDI portal
The following pages link to Time-series learning of latent-space dynamics for reduced-order model closure (Q2077555):
Displaying 25 items.
- Non intrusive reduced order modeling of parametrized PDEs by kernel POD and neural networks (Q825483) (← links)
- Data-driven variational multiscale reduced order models (Q2020754) (← links)
- Multi-level convolutional autoencoder networks for parametric prediction of spatio-temporal dynamics (Q2020980) (← links)
- The neural particle method - an updated Lagrangian physics informed neural network for computational fluid dynamics (Q2021164) (← links)
- Operator inference of non-Markovian terms for learning reduced models from partially observed state trajectories (Q2050562) (← links)
- Stabilized neural ordinary differential equations for long-time forecasting of dynamical systems (Q2112549) (← links)
- Spatiotemporally dynamic implicit large eddy simulation using machine learning classifiers (Q2115516) (← links)
- Latent-space time evolution of non-intrusive reduced-order models using Gaussian process emulation (Q2115690) (← links)
- Machine learning for prediction with missing dynamics (Q2128320) (← links)
- Neural-network learning of SPOD latent dynamics (Q2168295) (← links)
- Parametric non-intrusive model order reduction for flow-fields using unsupervised machine learning (Q2237497) (← links)
- A nudged hybrid analysis and modeling approach for realtime wake-vortex transport and decay prediction (Q2245302) (← links)
- Model reduction for the material point method via an implicit neural representation of the deformation map (Q2687512) (← links)
- A Tailored Convolutional Neural Network for Nonlinear Manifold Learning of Computational Physics Data Using Unstructured Spatial Discretizations (Q5005016) (← links)
- Nonlinear reduced-order modeling for three-dimensional turbulent flow by large-scale machine learning (Q6060754) (← links)
- Unsteady reduced order model with neural networks and flight-physics-based regularization for aerodynamic applications (Q6093461) (← links)
- CD-ROM: complemented deep -- reduced order model (Q6094649) (← links)
- Learning Theory for Dynamical Systems (Q6132792) (← links)
- Memory-based parameterization with differentiable solver: application to Lorenz '96 (Q6549988) (← links)
- Stiff neural ordinary differential equations (Q6556966) (← links)
- Data-driven reduced-order modeling of spatiotemporal chaos with neural ordinary differential equations (Q6565124) (← links)
- On principles of emergent organization (Q6571624) (← links)
- Divide and conquer: learning chaotic dynamical systems with multistep penalty neural ordinary differential equations (Q6641946) (← links)
- Neural dynamical operator: continuous spatial-temporal model with gradient-based and derivative-free optimization methods (Q6648386) (← links)
- Learning on predictions: fusing training and autoregressive inference for long-term spatiotemporal forecasts (Q6650079) (← links)