The following pages link to (Q3549649):
Displaying 20 items.
- Optimal detection of sparse principal components in high dimension (Q385763) (← links)
- Guaranteed recovery of planted cliques and dense subgraphs by convex relaxation (Q896191) (← links)
- Testing shape restrictions of discrete distributions (Q1702847) (← links)
- Digital almost nets (Q2112558) (← links)
- Tensor clustering with planted structures: statistical optimality and computational limits (Q2119244) (← links)
- Statistical and computational limits for sparse matrix detection (Q2196237) (← links)
- On the hardness of designing public signals (Q2278949) (← links)
- Improving and extending the testing of distributions for shape-restricted properties (Q2319645) (← links)
- Computational barriers in minimax submatrix detection (Q2352736) (← links)
- The Hsu-Robbins-Erdös theorem for the maximum partial sums of quadruplewise independent random variables (Q2682680) (← links)
- Robust characterizations of \(k\)-wise independence over product spaces and related testing results (Q2856576) (← links)
- Small Sample Spaces Cannot Fool Low Degree Polynomials (Q3541801) (← links)
- If the Current Clique Algorithms Are Optimal, so Is Valiant's Parser (Q4562283) (← links)
- A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem (Q4634034) (← links)
- Bounded Independence Plus Noise Fools Products (Q4641587) (← links)
- Invariance in Property Testing (Q4933370) (← links)
- Testing Monotone Continuous Distributions on High-Dimensional Real Cubes (Q4933371) (← links)
- Sample-Based High-Dimensional Convexity Testing. (Q5002640) (← links)
- Planted Dense Subgraphs in Dense Random Graphs Can Be Recovered using Graph-based Machine Learning (Q5870483) (← links)
- Cryptography from planted graphs: security with logarithmic-size messages (Q6581792) (← links)