Pages that link to "Item:Q4339190"
From MaRDI portal
The following pages link to Inequalities based on a generalization of concavity (Q4339190):
Displaying 19 items.
- Upper estimate for positive solutions of the \((p,n-p)\) conjugate boundary value problem (Q412426) (← links)
- Existence of positive solution for singular semi-positone \((k,n - k)\) conjugate \(m\)-point boundary value problem (Q1004784) (← links)
- Positive solutions for \((p,n-p)\) conjugate boundary value problems (Q1277065) (← links)
- Singular \((k,n-k)\) boundary value problems between conjugate and right focal (Q1381709) (← links)
- Multiple positive solutions of conjugate boundary value problems with singularities. (Q1412618) (← links)
- Bounds for solutions of multipoint boundary value problems (Q1614673) (← links)
- Positive solutions and nonlinear eigenvalue problems for functional-differential equations (Q1808977) (← links)
- Positive solutions for semipositone \((k,n-k)\) conjugate boundary value problems (Q1840796) (← links)
- Two-point higher-order BVPs with singularities in phase variables (Q1876491) (← links)
- A generalization of concavity for finite differences (Q1962896) (← links)
- Twin solutions to singular Dirichlet problems (Q1969994) (← links)
- Inequalities for solutions of multipoint boundary value problems (Q1974419) (← links)
- Positive solutions of a nonlinear \(n\)th order boundary value problem with nonlocal conditions (Q2484648) (← links)
- Upper and lower estimates of the positive solutions of a higher order boundary value problem (Q2511150) (← links)
- Triple positive solutions for \((k, n - k)\) conjugate boundary value problems (Q2777541) (← links)
- Extension of continuous and discrete inequalities due to Eloe and Henderson (Q4259694) (← links)
- Discrete kiguradze type inequalities (Q4511528) (← links)
- Multiplicity results for singular conjugate, focal, and \((N,P)\) problems (Q5929879) (← links)
- The Green's function for \((k,n-k)\) conjugate boundary value problems and its applications (Q5934243) (← links)