Pages that link to "Item:Q4523217"
From MaRDI portal
The following pages link to The cohomology rings of the orbit spaces of free transformation groups of the product of two spheres (Q4523217):
Displaying 19 items.
- The cohomology of orbit spaces of certain free circle group actions (Q351574) (← links)
- The cohomology ring of subspaces of universal \(S^1\)-space with finite orbit types (Q388023) (← links)
- Cohomology algebra of orbit spaces of free involutions on lens spaces (Q392576) (← links)
- A Borsuk-Ulam type theorem for the product of a projective space and 3-sphere (Q529095) (← links)
- Orbit spaces of free involutions on the product of two projective spaces (Q968075) (← links)
- Borsuk-Ulam theorems and their parametrized versions for \(\mathbb {F}P^m\times \mathbb {S}^3\) (Q1743475) (← links)
- On the existence of \(G\)-equivariant maps (Q1930317) (← links)
- Fixed point free actions of spheres and equivariant maps (Q2052572) (← links)
- Cohomology algebra of orbit spaces of free involutions on some Wall manifolds (Q2115185) (← links)
- Free involutions on odd dimensional Wall manifolds and cohomology of orbit spaces (Q2140641) (← links)
- Estimates of covering type and minimal triangulations based on category weight (Q2155617) (← links)
- Indices of a finitistic space with \(\bmod 2\) cohomology \(\mathbb{R} P^n \times \mathbb{S}^2\) (Q2327569) (← links)
- A parametrized Borsuk-Ulam theorem for a product of spheres with free \(\mathbb Z_{p}\)-action and free \(S^1\)-action (Q2464447) (← links)
- FREE ACTION OF FINITE GROUPS ON SPACES OF COHOMOLOGY TYPE (0, <i>b</i>) (Q3177351) (← links)
- Z/pZ Actions on (S n ) k (Q3761306) (← links)
- FREE ACTIONS OF SOME COMPACT GROUPS ON MILNOR MANIFOLDS (Q5229062) (← links)
- Cohomology algebra of orbit spaces of free involutions on the product of projective space and 4-sphere (Q6062706) (← links)
- Fixed point sets and orbit spaces of wedge of three spheres (Q6150398) (← links)
- Orbit spaces of free involutions on the product of three spheres (Q6572151) (← links)