The following pages link to (Q4742907):
Displaying 25 items.
- Duality via cycle complexes (Q601863) (← links)
- Weil-étale cohomology over finite fields (Q707429) (← links)
- La conjecture de Gersten pour les faisceaux de Hodge-Witt logarithmique. (The Gersten conjecture for the logarithmic Hodge-Witt sheaves) (Q752108) (← links)
- \(K_2\)-cohomology and the second Chow group (Q791580) (← links)
- Torsion 0-cycles on affine varieties in characteristic p (Q910445) (← links)
- Application d'Abel-Jacobi p-adique et cycles algébriques. (p-adic Abel- Jacobi map and algebraic cycles) (Q911662) (← links)
- Divided powers in Chow rings and integral Fourier transforms (Q981627) (← links)
- Torsion dans le groupe de Chow de codimension deux (Q1063650) (← links)
- Torsion zero-cycles and étale homology of singular schemes (Q1179295) (← links)
- Smooth affine varieties and complete intersections (Q1331739) (← links)
- Hodge theory of classifying stacks (Q1645026) (← links)
- Higher \(l\)-adic Abel-Jacobi mappings and filtrations on Chow groups (Q1896008) (← links)
- Artin-Verdier duality for arithmetic surfaces (Q1923277) (← links)
- Murthy's conjecture on 0-cycles (Q2315189) (← links)
- Torsion 0-cycles with modulus on affine varieties (Q2401908) (← links)
- Derived log Albanese sheaves (Q2689543) (← links)
- Zero cycles and the number of generators of an ideal (Q3360299) (← links)
- (Q3739256) (← links)
- Zero cycles with modulus and zero cycles on singular varieties (Q4590955) (← links)
- Classes de Chern et classes de cycles en cohomologie de Hodge-Witt logarithmique (Q4723871) (← links)
- (Q4729895) (← links)
- On the computation of the cycle class map for nullhomologous cycles over the algebraic closure of a finite field (Q4841823) (← links)
- Motivic cohomology: applications and conjectures (Q5197954) (← links)
- Suslin homology via cycles with modulus and applications (Q5869860) (← links)
- On the integral Tate conjecture for the product of a curve and a \(CH_0\)-trivial surface over a finite field (Q6133345) (← links)