Pages that link to "Item:Q5288422"
From MaRDI portal
The following pages link to Solvable lattice models labelled by Dynkin diagrams (Q5288422):
Displaying 20 items.
- The free-fermionic \(C_2^{(1)}\) loop model, double dimers and Kashaev's recurrence (Q721056) (← links)
- Discrete holomorphicity at two-dimensional critical points (Q846928) (← links)
- Exact solution and finite size properties of the \(U_{q}[\text{osp}(2| 2m)]\) vertex models (Q881360) (← links)
- Integrable anyon chains: from fusion rules to face models to effective field theories (Q895362) (← links)
- New integrable lattice models from Fuss-Catalan algebras (Q1570672) (← links)
- Integrable vertex and loop models on the square lattice with open boundaries via reflection matrices (Q1571438) (← links)
- Algebraic construction of higher-rank dilute A models (Q1571446) (← links)
- Solvable RSOS models based on the dilute BWM algebra (Q1571447) (← links)
- Intersecting loop models on \({\mathbb Z}^ d\): rigorous results. (Q1572534) (← links)
- Boundary conditions in rational conformal field theories (Q1572535) (← links)
- Order parameters of the dilute A models (Q1896791) (← links)
- Indicators of solvability for lattice models (Q1978180) (← links)
- Critical behaviour of the dilute \(O(n)\), Izergin-Korepin and dilute \(A_L\) face models: Bulk properties (Q2565171) (← links)
- The fully packed loop model as a non-rational<i>W</i><sub>3</sub>conformal field theory (Q2960270) (← links)
- Discrete holomorphicity and integrability in loop models with open boundaries (Q3301511) (← links)
- (Q4011237) (← links)
- Exact Results for Hamiltonian Walks from the Solution of the Fully Packed Loop Model on the Honeycomb Lattice (Q4492202) (← links)
- Fusion hierarchies,<i>T</i>-systems and<i>Y</i>-systems for the ${A_2^{(1)}}$ models (Q5006898) (← links)
- Fusion hierarchies, <i>T</i>-systems and <i>Y</i>-systems for the dilute $\boldsymbol{A_2^{(2)}}$ loop models (Q5134400) (← links)
- Boundary conditions in rational conformal field theories. (Q5934884) (← links)