The following pages link to D-branes on a gauged WZW model (Q5956568):
Displaying 25 items.
- Quasi-Hamiltonian bookkeeping of WZNW defects (Q391277) (← links)
- D-branes and matrix factorisations in supersymmetric coset models (Q406714) (← links)
- The abelian cosets of the Heisenberg group (Q445723) (← links)
- Defects in \(G/H\) coset, \(G/G\) topological field theory and discrete Fourier-Mukai transform (Q632408) (← links)
- On D-branes in the Nappi-Witten and GMM gauged WZW models (Q648773) (← links)
- The structure of non-abelian kinks (Q737664) (← links)
- On the geometry of coset branes (Q876170) (← links)
- Generalised permutation branes on a product of cosets \(G_{k_{1}}/H\times G_{k_{2}}/H\) (Q879858) (← links)
- Twisted boundary states in Kazama-Suzuki models (Q1418113) (← links)
- Organizing boundary RG flows (Q1566259) (← links)
- The \(Z_k\times D_{k^\prime}\) brane box model (Q1588495) (← links)
- Maximally symmetric D-branes in gauged WZW models (Q1615016) (← links)
- Noncommutative gauge theory of twisted D-branes (Q1848761) (← links)
- D-branes in asymmetrically gauged WZW models and axial-vector duality (Q1850756) (← links)
- Novel construction of boundary states in coset conformal field theories (Q1852579) (← links)
- Integrable branes in generalized \(\lambda\)-deformations (Q2100916) (← links)
- Little strings, long strings, and fuzzballs (Q2292450) (← links)
- Abelian and non-abelian branes in WZW models and gerbes (Q2575363) (← links)
- On canonical quantization of the gauged WZW model with permutation branes (Q2919120) (← links)
- CANONICAL QUANTIZATION OF THE WZW MODEL WITH DEFECTS AND CHERN–SIMONS THEORY (Q3570707) (← links)
- (Q4453417) (← links)
- D-branes on group manifolds and deformation quantization (Q5949669) (← links)
- Boundary states in coset conformal field theories (Q5961240) (← links)
- Bootstrapping boundaries and branes (Q6041696) (← links)
- Towards a quadratic Poisson algebra for the subtracted classical monodromy of symmetric space sine-Gordon theories (Q6121763) (← links)