Pages that link to "Item:Q847154"
From MaRDI portal
The following pages link to \(t\)-invertibility and Bazzoni-like statements (Q847154):
Displaying 29 items.
- The \(t\)-Nagata ring of \(t\)-Schreier domains (Q308334) (← links)
- Integral domains of finite \(t\)-character (Q405916) (← links)
- Characterizing domains of finite \(*\)-character (Q979073) (← links)
- On \(\star\)-potent domains and \(\star\)-homogeneous ideals (Q2089465) (← links)
- Putting \(t\)-invertibility to use (Q2752919) (← links)
- Integral Domains in which Every Nonzero<i>t</i>-Locally Principal Ideal is<i>t</i>-Invertible (Q2850827) (← links)
- Ten Problems on Stability of Domains (Q2949001) (← links)
- Open Problems in Commutative Ring Theory (Q2949011) (← links)
- (Q2970940) (← links)
- <i>t</i>-Schreier Domains (Q3015069) (← links)
- Integral Domains in Which Nonzero Locally Principal Ideals are Invertible (Q3015078) (← links)
- STAR-INVERTIBILITY AND t-FINITE CHARACTER IN INTEGRAL DOMAINS (Q3117898) (← links)
- Stability and Clifford Regularity with Respect to Star Operations (Q3145452) (← links)
- Revisiting the Bourgain-Tzafriri restricted invertibility theorem (Q3622654) (← links)
- (Q4343539) (← links)
- Graded Prüfer domains (Q4643666) (← links)
- Finite character, local stability property and local invertibility property (Q4682445) (← links)
- PRESENTATIONS AND MODULE BASES OF INTEGER-VALUED POLYNOMIAL RINGS (Q4904443) (← links)
- Graded Prüfer domains with Clifford homogeneous class semigroups (Q4959855) (← links)
- Invertibility of ideals in Prüfer extensions (Q4977703) (← links)
- ∗-Almost super-homogeneous ideals in ∗-h-local domains (Q5089426) (← links)
- A Bazzoni-Type Theorem for Multiplicative Lattices (Q5119694) (← links)
- A Survey on the Local Invertibility of Ideals in Commutative Rings (Q5119696) (← links)
- ES-<i>w</i>-stability (Q5153807) (← links)
- Bazzoni’s conjecture and almost Prüfer domains (Q5382975) (← links)
- <i>LPI</i>domains and Pullbacks (Q5412111) (← links)
- Two questions on domains in which locally principal ideals are invertible (Q5739082) (← links)
- Domains whose ideals meet a universal restriction (Q5879280) (← links)
- Almost Gorenstein Dedekind domains (Q6608219) (← links)