On the dynamics of the Rayleigh-Duffing oscillator (Q1729164)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: On the dynamics of the Rayleigh-Duffing oscillator |
scientific article; zbMATH DE number 7030106
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | On the dynamics of the Rayleigh-Duffing oscillator |
scientific article; zbMATH DE number 7030106 |
Statements
On the dynamics of the Rayleigh-Duffing oscillator (English)
0 references
27 February 2019
0 references
Consider the planar system \[ \frac{dx}{dt}= y,\quad \frac{dy}{dt}=-ax-2bxy-x^3-y^3. \] The authors prove that this system \begin{itemize} \item[(i)] has no global analytic first integrals, \item[(ii)] has no Darboux polynomials, \item[(iii)] is not Darboux integrable, \item[(iv)] is not Liouville integrable, \item[(v)] does not have any center neither nondegenerate nor nilpotent. \end{itemize}
0 references
Rayleigh-Duffing oscillator
0 references
first integrals
0 references
center problem
0 references
0.91908497
0 references
0.90385646
0 references
0 references
0 references
0.89742464
0 references
0.89576125
0 references
0.8936381
0 references