Linearization of DAEs along trajectories (Q1805094)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Linearization of DAEs along trajectories |
scientific article; zbMATH DE number 753649
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Linearization of DAEs along trajectories |
scientific article; zbMATH DE number 753649 |
Statements
Linearization of DAEs along trajectories (English)
0 references
13 May 1996
0 references
Linearization of differential algebraic equations, DAEs, \(F(x',x,t) = 0\) and of control DAEs \(F(x',x,t,u) = 0\) are considered. A linearization is called linear time invariant if the linearization is performed in the time variable also, resulting in a time invariant DAE and control DAE respectively. It is shown on two examples that this type of linearization may change crucial properties of the problem, e.g. stability or the dimension of the solution manifold. A linearization not involving time leads to a linear DAE where the coefficient matrices are time dependent. If this linearization is done with respect to a constant solution it is shown using additional assumptions that the linearized DAE has a solution manifold with the same dimension. Using this result a similar result is shown for a linearization along a trajectory. With the same arguments linearization of control DAEs are investigated.
0 references
linearization of differential algebraic equations
0 references
control
0 references
stability
0 references
dimension of the solution manifold
0 references
0 references
0 references
0 references
0 references
0.8699783
0 references
0.8696871
0 references
0.85950136
0 references
0.8586862
0 references
0.85815984
0 references
0.8551683
0 references
0.8498373
0 references
0.8473843
0 references
0.8472873
0 references