Reducible pattern \(k\)-potent ray pattern matrices (Q1863568)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Reducible pattern \(k\)-potent ray pattern matrices |
scientific article; zbMATH DE number 1880065
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Reducible pattern \(k\)-potent ray pattern matrices |
scientific article; zbMATH DE number 1880065 |
Statements
Reducible pattern \(k\)-potent ray pattern matrices (English)
0 references
11 March 2003
0 references
An \(n \times n \) ray pattern is the set of all \(n \times n \) complex matrices with a specified zero-nonzero pattern and with the argument specified for each nonzero entry. A ray pattern \(A\) is said to be pattern \(k\)-potent if \(k\) is the smallest positive integer such that \(A^{k+1} = A\) as ray patterns. The author extends some results of \textit{J. Stuart}, \textit{L. Beasley} and \textit{B. Shader} [Linear Algebra Appl. 346, No. 1--3, 261--271 (2002; Zbl 0998.15030)] to the reducible ray patterns and supplies his article with interesting examples.
0 references
ray pattern matrix
0 references
reducible ray patterns
0 references
0.9745012
0 references
0.94464064
0 references
0.9320286
0 references
0.92887163
0 references
0.91891265
0 references
0 references
0.88256633
0 references
0.8797316
0 references
0.8720213
0 references
0.8549422
0 references