Arithmetic properties for Appell-Lerch sums (Q2054700)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Arithmetic properties for Appell-Lerch sums |
scientific article; zbMATH DE number 7438400
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Arithmetic properties for Appell-Lerch sums |
scientific article; zbMATH DE number 7438400 |
Statements
Arithmetic properties for Appell-Lerch sums (English)
0 references
3 December 2021
0 references
An Appell-Lerch sum is a series of the form \[ AL(x,q,z)=\frac{1}{(q,q/z,q;q)_\infty}\sum_{n=-\infty}^\infty \frac{(-1)^{+1}q^{n(n+1)/2}z^{n+1}}{1-xzq^n}, \] with certain restrictions on \(x\) and \(z\), and where \[ (a_1,a_2,\ldots,a_k;q)_\infty=(a_1;q)_\infty(a_2;q)_\infty\cdots(a_k;q)_\infty \quad \text{and}\quad (a;q)_\infty=\prod_{n=0}^\infty(1-aq^n). \] \textit{S. H. Chan} [Acta Arith. 153, No. 2, 161--189 (2012; Zbl 1264.11089)] studied the arithmetic properties of the co-efficients \(a_{j,p}(n)\) of the following special case of the Appell-Lerch sums \[ \sum_{n=0}^\infty a_{j,p}(n)q^n:=\frac{1}{(q^j,q^{p-j},q^p;q^p)_\infty}\sum_{n=-\infty}^\infty\frac{(-1)^nq^{pn(n+1)/2+jn+j}}{1-q^{pn+j}}. \] Chan proved several congruences for these coefficients and conjectured several more. In this paper, the authors prove a few conjectures of Chan. For instance, they prove the following: for all \(n\geq 0\), we have \[ a_{1,10}(10n+8)\equiv a_{3,10}(10n+2)\equiv 0 \pmod4, \] and \[ a_{1,3}(15n+8)\equiv a_{1,3}(15n+4)\equiv 0 \pmod 5. \] The techniques used are elementary.
0 references
Appell-Lerch sums
0 references
generalized Lambert series
0 references
congruence
0 references
0.76284593
0 references
0 references
0.70407534
0 references
0.70281893
0 references
0 references
0.6011304
0 references
0 references
0.5870617
0 references
0.5863552
0 references