Equality of Cauchy mean values (Q2707231)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: Equality of Cauchy mean values |
scientific article
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | Equality of Cauchy mean values |
scientific article |
Statements
1 April 2001
0 references
Cauchy mean value
0 references
divided differences
0 references
functional equation
0 references
0.70759356
0 references
0.69743896
0 references
0.6962841
0 references
0.68909156
0 references
0.6865908
0 references
Equality of Cauchy mean values (English)
0 references
If \(I\) is a real interval, \(f\) and \(g\) are real valued \(n-1\) times differentiable functions on \(I\) such that \(g^{(n-1)}\) is non-vanishing, and \(x_1,x_2,\dots ,x_n\in I\), then, according to a theorem by \textit{E. Leach} and \textit{M. Sholander} [J. Math. Anal. Appl. 104, 390-407 (1984; Zbl 0558.26014)], there exists a \(t\) between \(\min(x_1,\dots ,x_n)\) and \(\max(x_1,\dots ,x_n)\) such that NEWLINE\[NEWLINE\frac{[x_1,\dots ,x_n]_f}{[x_1,\dots ,x_n]_g}=\frac{f^{(n-1)}(t)}{g^{(n-1)}(t)},NEWLINE\]NEWLINE where \([x_1,\dots ,x_n]_f\) denotes the divided difference of \(f\) at the points \(x_1,\dots ,x_n\). If the function \(\frac{f^{(n-1)}}{g^{(n-1)}}\) is invertible, this unique \(t\) is denoted by \(D_{f,g}(x_1,x_2,\dots ,x_n)\). Supposing that \(n\geq 3\) is fixed and the real valued functions \(f,g,F,G\) are \(n+2\) times continuously differentiable on \(I\) such that \(g^{(n-1)}\), \(G^{(n-1)}\), \((\frac{f^{(n-1)}}{g^{(n-1)}})'\) and \((\frac{F^{(n-1)}}{G^{(n-1)}})'\) are non-vanishing, the functional equation NEWLINE\[NEWLINED_{f,g}(x_1,x_2,\dots ,x_n)=D_{F,G}(x_1,x_2,\dots ,x_n)\;\;(x_1,x_2,\dots ,x_n\in I)NEWLINE\]NEWLINE holds if, and only if, the linear hull of the pair \(\{f^{(n-1)},g^{(n-1)}\}\) coincides with that of \(\{F^{(n-1)}\), \(G^{(n-1)}\}\).
0 references