A symbolic approach to some identities for Bernoulli-Barnes polynomials (Q2800148)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: A symbolic approach to some identities for Bernoulli-Barnes polynomials |
scientific article; zbMATH DE number 6569139
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | A symbolic approach to some identities for Bernoulli-Barnes polynomials |
scientific article; zbMATH DE number 6569139 |
Statements
15 April 2016
0 references
Bernoulli-Barnes polynomials
0 references
symbolic calculus
0 references
self-dual sequences
0 references
0.78372556
0 references
0.7387305
0 references
0 references
0.7317157
0 references
0.72874933
0 references
A symbolic approach to some identities for Bernoulli-Barnes polynomials (English)
0 references
For a fixed vector \(a = \left( a_1, a_2, \dots, a_n \right) \in {\mathbb R}_{ >0 }^n\), the \textit{Bernoulli-Barnes polynomials} \(B_k(x; a)\) are defined through NEWLINE\[NEWLINE {{ z^n e^{ xz } } \over { \left( e^{ a_1 z } - 1 \right) \cdots \left( e^{ a_n z } - 1 \right) }} \;= \;\sum_{ k \geq 0 } B_k(x; a) {{ z^k } \over { k! }} NEWLINE\]NEWLINE [\textit{E. W. Barnes}, Philos. Trans. R. Soc. Lond., Ser. A 196, 265--387 (1901; JFM 32.0442.02)]. They appear as special evaluations of the \textit{Barnes \(\zeta\)-function} NEWLINE\[NEWLINE \zeta (z, x; a) \;:= \sum_{ m \in {\mathbf Z}_{ \geq 0 }^n } { 1 \over { \left( x + m_1 a_1 + \cdots + m_n a_n \right)^z }},NEWLINE\]NEWLINE defined for \(\text{Re} (x) > 0\) and \(\text{Re} (z) > n\) and continued meromorphically to the complex plane, in the same fashion that Bernoulli polynomials appear as special evaluations of the Riemann \(\zeta\)-function.NEWLINENEWLINEThe paper under review re-proves and extends several structure theorems about Bernoulli-Barnes polynomials in [\textit{A. Bayad} and \textit{M. Beck}, Int. J. Number Theory 10, No. 5, 1321--1335 (2014; Zbl 1369.11018)] by means of symbolic (umbral) calculus. In particular, the paper gives a direct proof that the sequence \(\left( (-1)^n (a_1+\cdots+a_n)^{ -n } B_n(0; a) \right)_{ n \geq 0 }\) is self dual. (A sequence \((c_n)_{ n \geq 0 }\) is self dual if \(c_n = \sum_{ k=0 }^n \left( {n \atop k} \right) (-1)^k c_k\) for all \(n \geq 0\).)
0 references