On metric characterizations of some classes of Banach spaces (Q2844651)

From MaRDI portal





scientific article; zbMATH DE number 6981801
Language Label Description Also known as
English
On metric characterizations of some classes of Banach spaces
scientific article; zbMATH DE number 6981801

    Statements

    29 August 2013
    0 references
    20 November 2018
    0 references
    Banach space
    0 references
    diamond graphs
    0 references
    expander graphs
    0 references
    Laakso graphs
    0 references
    Lipschitz embedding
    0 references
    Radon-Nikodým property
    0 references
    bi-Lipschitz embedding
    0 references
    Heisenberg group
    0 references
    Markov convexity
    0 references
    superreflexive Banach space
    0 references
    thick family of geodesics
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    On metric characterizations of some classes of Banach spaces (English)
    0 references
    The paper under review can be divided into two parts. The first part deals with the metric characterizations of Banach spaces with no cotype and no type \( > 1 \) in terms of graphs with uniformly bounded degrees. It is proved in the second part that Banach spaces containing bilipschitz images of the infinite diamond do not possess the Radon-Nikodým property. At the end of the paper, the author gives a new proof of the Cheeger-Kleiner result (see Corollary 1.7 from \textit{J. Cheeger} and \textit{B. Kleiner} [Geom. Funct. Anal. 19, No. 4, 1017--1028 (2009; Zbl 1200.58007)] on Banach spaces containing bilipschitz images of the Laakso space.
    0 references

    Identifiers

    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references
    0 references