Pages that link to "Item:Q2890745"
From MaRDI portal
The following pages link to Superposition rules for higher order systems and their applications (Q2890745):
Displaying 20 items.
- Nonlinear superposition formulas for two classes of non-holonomic systems (Q459033) (← links)
- Lie symmetries for Lie systems: applications to systems of ODEs and PDEs (Q668503) (← links)
- Dirac-Lie systems and Schwarzian equations (Q2249233) (← links)
- \(k\)-symplectic Lie systems: theory and applications (Q2255122) (← links)
- Lie-Hamilton systems on the plane: properties, classification and applications (Q2259257) (← links)
- Quasi-Lie families, schemes, invariants and their applications to Abel equations (Q2352852) (← links)
- On certain properties of linear iterative equations (Q2440592) (← links)
- Lie-Hamilton systems: theory and applications (Q2855848) (← links)
- Geometric Hamilton–Jacobi theory on Nambu–Poisson manifolds (Q2974662) (← links)
- A functional realization of 𝔰𝔩(3, ℝ) providing minimal Vessiot–Guldberg–Lie algebras of nonlinear second-order ordinary differential equations as proper subalgebras (Q3178335) (← links)
- On Some Applications of the Superposition Principle with Fourier Basis (Q4509875) (← links)
- Lie–Hamilton systems on curved spaces: a geometrical approach (Q4600897) (← links)
- Poisson–Hopf algebra deformations of Lie–Hamilton systems (Q4606191) (← links)
- Multisymplectic structures and invariant tensors for Lie systems (Q5053515) (← links)
- Reduction and reconstruction of multisymplectic Lie systems (Q5054683) (← links)
- Quasi-Lie schemes for PDEs (Q5233038) (← links)
- On Lie systems and Kummer-Schwarz equations (Q5397760) (← links)
- Poisson–Hopf deformations of Lie–Hamilton systems revisited: deformed superposition rules and applications to the oscillator algebra (Q5875814) (← links)
- Contact Lie systems: theory and applications (Q6166706) (← links)
- Lie-Hamilton systems on Riemannian and Lorentzian spaces from conformal transformations and some of their applications (Q6649898) (← links)