The intransitive dice kernel: \( \frac{1\kern-2pt\mathrm{I}_{x\ge y}-1\kern-2pt\mathrm{I}_{x\le y}}{4} - \frac{3(x-y)(1+xy)}{8} \) (Q6582363)
From MaRDI portal
| This is the item page for this Wikibase entity, intended for internal use and editing purposes. Please use this page instead for the normal view: The intransitive dice kernel: \( \frac{1\kern-2pt\mathrm{I}_{x\ge y}-1\kern-2pt\mathrm{I}_{x\le y}}{4} - \frac{3(x-y)(1+xy)}{8} \) |
scientific article; zbMATH DE number 7891479
| Language | Label | Description | Also known as |
|---|---|---|---|
| English | The intransitive dice kernel: \( \frac{1\kern-2pt\mathrm{I}_{x\ge y}-1\kern-2pt\mathrm{I}_{x\le y}}{4} - \frac{3(x-y)(1+xy)}{8} \) |
scientific article; zbMATH DE number 7891479 |
Statements
The intransitive dice kernel: \( \frac{1\kern-2pt\mathrm{I}_{x\ge y}-1\kern-2pt\mathrm{I}_{x\le y}}{4} - \frac{3(x-y)(1+xy)}{8} \) (English)
0 references
2 August 2024
0 references
0 references
0 references